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ABSTRACT
Molecular motors convert chemical energy into mechanical force
and movement. Operating at energies just above those of the
thermal bath, these motors experience large fluctuations, and their
physical description must be necessarily stochastic. Here, motor
operation is described as a biased diffusion on a potential energy
surface defined by the interactions of the motor with its track and
its fuel. These ideas are illustrated with a model of the rotary
movement of the Fo motor.

1. Introduction
A quarter of a century ago, the cell and its many internal
compartments were still thought of as microscopic reac-
tion vessels containing complex chemical mixtures held
at constant temperature and pressure. As the intricate
pathways of the intermediate metabolism became avail-
able, scientists hoped to described cellular processes as
the result of a complex series of parallel and sequential
second-order chemical reactions brought about by the
diffusion and random collisions of chemical species in
these confined spaces. During the intervening time, this
view has changed dramatically. Cells are polar structures,
and their interior is neither homogeneous nor isotropic.
Moreover, most of the essential cellular functions such
as chromosomal segregation during cell division, trans-

location of organelles from one part of the cell to another,
or the maintenance of a voltage across the membrane all
involve directional movement and transport of chemical
species. Processes such as replication, transcription, and
translation require the information encoded in the se-
quence of linear polymers to be read and copied in a
directional manner, and cells must often move and orient
in response to external chemical gradients and other
signals.

To overcome the randomizing effect of Brownian
motion and carry out these directional processes, cells
possess molecular structures that behave as tiny machine-
like devices. These devices operate as molecular motors,
converting chemical energy into mechanical work. How-
ever, they are unlike macroscopic engines in that, because
of their dimensions, the many small parts that make up
these molecular motors must operate at energies only
marginally higher than that of the thermal bath and hence
are subjected to large fluctuations. Sitting astride the line
that separates stochastic from deterministic phenomena,
the function of these molecular motors can be thought
to be that of “taming” the randomness of molecular events
and generating directional processes in the cell.

Cells have hundreds of different types of molecular
motors, each specialized for a particular function. Many
biological motor-like proteins have been discovered and
characterized in recent years (see, for example, ref 1).
Although there is much variation in design and perfor-
mance among them, several lines of evidence suggest that
many such “mechanochemical” proteins share funda-
mental underlying features that can be understood with
the same basic concepts and theories. Such theories seek
to describe the physical principles that govern the behav-
ior of molecular motors, to explain the role of fluctuations
in their operation, to describe the nature of the coupling
between chemical reaction and physical coordinates, and
to understand specific aspects of this conversion, such as
its efficiency and reversibility.

In this paper we describe the basic physical ideas
behind the stochastic description of molecular motors,
and some of the general formalism of stochastic processes.
To illustrate how these ideas work in practice, a simple
model for the ion-powered Fo rotary motor is then
presented.
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2. Basic Theory
Molecular motors come in a wide variety of designs. Some
motors operate in a cyclic fashion, undergoing a number
of steps that correspond to changes in conformation and/
or in chemical state and eventually resetting themselves
to their initial configuration. The steps of the mechanical
cycle are coupled to the states of a chemical cycle that
generates the energy that fuels the movement. The
chemical steps in cyclic motors typically involve catalytic
turnover of a high-energy molecule, generally a nucleotide
(e.g., myosin, kinesin, helicases), or translocation of an
ion across an electrochemical gradient (e.g., Fo ATPase,
the bacterial flagellar motor).2 Other motors are “one-
shot” motors that release previously stored elastic energy
and then are disassembled (e.g., spasmoneme, actin
polymerization).3

The central difference between macroscopic and mo-
lecular motors is that the latter are so small that Brownian
motion dominates their operation. This means that ther-
mal fluctuations are an essential component of the
molecular mechanism of the motor/enzyme. Enzymatic
catalysis depends on thermally induced crossing of po-
tential energy barriers. Similarly, the ability of molecular
motors to generate forces and motion may depend on
thermally driven diffusion from one site on a filament
(such as actin, DNA, or a microtubule) to the next.

A motor molecule interacting with a track and with
molecules in solution possesses many degrees of free-
dom, but most of these fluctuate very rapidly and are
approximately at equilibrium on the experimental time
scale. These extra degrees of freedom in the protein and
in the solvent that surrounds it will be called bath
variables.4 Bath variables do not appear explicitly in the
description of the motor, but they affect its motion
implicitly as fluctuating stochastic forces, as sources of

friction, and as entropic contributions to the potential
energy surface that governs the motor. The rest of the
variables, called the system variables, define an n-dimen-
sional state space in which the motor moves. Each point
on the state space represents a unique configuration of
the motor and has an associated free energy, the potential
of mean force. The potential of mean force depends on
the system variables and defines the potential energy
surface on which the motor moves. It arises primarily from
three sources: (1) interactions within the motor molecule
itself, and between the motor and its track (if it has one),
(2) interactions between the motor and fuel molecules,
and (3) interactions of all of the above with the solvent
environment. All three include entropic contributions
associated with the bath degrees of freedom. Since a
molecular motor must have a source of chemical energy,
at least one of the system variables must measure the
progress of the chemical reaction and will be called the
chemical variable or reaction coordinate. All others will
be called mechanical variables. At least one of the me-
chanical variables must describe the progress of the motor
along its track or, for rotary motors, the angle of rotation
about its axis.

In the simplest case, when the motor can be described
by only one chemical and one mechanical variable, the
potential energy surface can be easily visualized (see
Figure 1a). A cut through the surface along the chemical
coordinate gives a reaction free energy diagram. A change
in the concentration of reactants or products changes the
net free energy of the reaction and tilts the diagram
forward or backward along the chemical coordinate axis.
A cut through the surface along the mechanical (position)
variable gives the potential for movement of the motor
along its track in the absence of any chemistry. Application
of an external force against or in favor of the direction of

FIGURE 1. (a) Minimal potential energy surface for a molecular motor. The surface is periodic in both the reaction coordinate and
position coordinate, reflecting the cyclic nature of both enzymatic turnovers and motor cycles. The surface has three local minima
(labeled A, B, C) connected by low-energy passes and is tilted along the chemical axis, representing the driving force for the motor, i.e.,
the free energy of reaction. An externally applied load force would appear as a tilt of the surface along the position coordinate. The
long trough in the center couples chemical energy to mechanical motion. The system point moves by random walk over this surface.
(b) Correspondence between the potential energy surface and the kinetic mechanism of the motor. The regions around the local minima
represent intermediate species. Diffusion between minima is equivalent to chemical transitions, which can be described by kinetic rate
constants.
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motion tilts the surface along the mechanical coordinate
axis. The trough in the center of Figure 1a (arrows) is the
region where chemistry is coupled to mechanical motion.
In this region, the slope of the low-energy pathway in the
chemical direction drives movement along the mechanical
direction. Thus, chemical energy is converted into motion
in this region of the potential energy surface.

For a macroscopic system, motion on this potential
would be a smooth trajectory determined by the shape
of the surface, but in the presence of random thermal
forces, the motion is stochastic and only statistically biased
by the potential. If inertial forces are negligible compared
to friction (as is almost always the case at the nanometer
scale), and if the random forces are rapid on the time scale
of interest, so that they loose correlation between steps
of the stochastic walk, the motion is Markovian and
amounts to a biased diffusion of the system point on the
potential energy surface.

The movement over the potential energy surface in
the mechanochemical space is then well described by
Langevin equations, which, in simple cases, are New-
tonian equations of motion for over-damped particles
subject to a fluctuating force:

where subscripts 1 and 2 refer to the chemical and spatial
position coordinates, respectively, of the motor. Here, V
is the motor potential, the γ’s are friction coefficients, the
FBi’s are random (Brownian) bath forces, and the f ’s are
external mechanical forces acting on the motor. Note that
molecular motors always operate in the low Reynold’s
number regime where inertial forces can be neglected.

Because of the random force, individual trajectories
obtained by solving these equations are meaningless; only
statistical distributions over many trajectories are useful.
The appropriate solution of the Langevin equations is thus
a probability distribution, w(x1,x2,t), for the location of the
system point at each time t. Since total probability is
conserved, this probability distribution must satisfy a
continuity equation:

where J is the two-component probability current. For a
biased diffusion process J is the sum of two contributions,
a diffusion current and a drift current:

where fi are the forces acting on the ith component of
the state space due to potential and external forces, but

excluding the stochastic force, which is accounted for by
the first term. The equilibrium state corresponds to Ji )
0, in which case eq 3 yields a Boltzmann distribution for
w ensuring detailed balance. Substituting eq 3 into eq 2
yields the Smoluchowski equation:5

which has the form of a biased diffusion equation, as
expected. The Smoluchowski equation gives the prob-
ability density, w(x1,x2,t); eq 3 gives the probability cur-
rents and hence the rates at which the system moves over
the potential energy surface through the stages of its
mechanochemical cycle. Formally, the Smoluchowski
equation can be written

where K is the operator in square brackets in eq 4. This
form will be useful for comparison with the results of the
next section.

2.1. Connecting Mechanics to Kinetics. The picture of
a molecular motor outlined so far is essentially mechanical
and stochastic: only a few degrees of freedom are
important, movement is stochastic and diffusive, friction
dominates inertia, and the combination of external forces
and the potential energy surface leads to diffusive currents
that couple chemistry to force and movement. In many
circumstances, this mechanical picture can be mapped
directly onto the standard kinetic view that is more
familiar to chemists. Figure 1b shows how this is done. A
typical free energy surface will have minima (labeled A,
B, and C in Figure 1b) around which the system point
tends to fluctuate for long periods of time. These cor-
respond to the recognizable intermediate species in a
chemical kinetic mechanism. The “concentration” or
population corresponding to each intermediate is pro-
portional to the integral of the probability density in the
region surrounding the minimum. The minima are con-
nected to each other by low-energy “passes”, and oc-
casionally fluctuations will cause the system point to
wander through one of these to a new intermediate state.
This amounts to a chemical transition or reaction, and
the statistical rate at which such transitions occur is
governed by kinetic rate constants. Like the populations,
the rate constants can be calculated from the diffusion
currents and probability densities of the Smoluchowski
equation.4 Since the diffusion of the system is affected by
external mechanical forces, these calculated rate constants
will also depend on external forces. Note that in this
approximation all mechanical motions are thermally
excited transitions, and so the rate constants contain
Boltzmann factors of the form exp(-fL/kBT), where L is
the mechanical transition distance. However, many me-
chanical motions cannot always be accurately described
by thermally excited processes.6-8 Nonetheles, for most
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applications, it is possible to go in a systematic way from
the relatively detailed, mechanical view represented by eqs
1-4 to a more phenomenological, course-grained, chemi-
cal kinetic view. The potential energy surface determines
the kinetic mechanism, and, conversely, the kinetic mech-
anism can reveal the main features of the potential energy
surface. This equivalence is true for any small molecular
system, not just a molecular motor, but two things
separate a molecular motor from an ordinary enzyme or
chemical system.

(1) Some of the rate constants in the kinetic mechanism
depend on the spatial position of the motor. Others may
depend on externally applied forces. These rate constants
identify the steps where motion and work are produced.
The way in which the rate constants depend on external
force, and the way they contribute to the overall kinetic
mechanism, determine all the crucial properties of the
motor: how it responds to a load, its maximum generated
force, its maximum velocity, its chemical turnover rate,
the number of fuel molecules burned per motor step
taken, its efficiency and reversibility, etc.

(2) It is possible for two intermediate species to be
connected by several different kinetic pathways. Figure
2a shows the kinetic mechanism corresponding to the
potential energy surface in Figure 1. On this diagram, a
horizontal transition is a purely chemical process (with
no net movement by the motor), and a vertical transition
is a purely mechanical movement (with no progress in
the chemical reaction). Because the potential energy
surface is periodic, the “kinetic mechanism” is also a
periodic array of states connected by transition paths. The
important point is that pathways 3 and 4 are different.
Comparing Figure 2b to Figure 1b, path 3 corresponds to
movement between states A and C through the long

trough, and path 4 corresponds to movement between the
same two states, but over a steep, narrow barrier. Figure
2b shows the equivalent kinetic mechanism as it is usually
written. Because states A and C are connected by two
distinct paths, two chemical equations of the form A a C
appear. These can always be combined into a single
equation with total effective rate constants (as shown at
right in Figure 2b), but it must then be borne in mind
that the combined equation no longer corresponds to a
single pathway on the free energy surface.

2.1.1. Tight and Loose Coupling. Finally, notice that
path 4 corresponds to a nonproductive chemical turnover,
i.e., to a “leak” in the coupling between chemistry and
movement. If the rate constants (diffusion currents) along
this pathway are significant (compared to the productive
path 3), a fraction of the fuel molecules burned will
produce no movement. On the other hand, if path 4 is
negligibly slow, every chemical turnover must result,
sooner or later, in a forward physical step by the motor.
The former case is a loose coupled motor and the latter a
tight coupled motor. One practical measure of mechano-
chemical coupling in a given motor is

where 〈v〉 is the mean velocity, 〈r〉 the mean reaction rate,
and L the step size (i.e., the periodicity of the track or
rotation angle or, in general, of the potential along the
position coordinate). If the motor is tight coupled, L〈r〉
will equal the mean motor velocity, 〈v〉, and ø will be close
to unity, but if a significant number of chemical steps do
not lead to motion (or somehow lead to partial steps), ø
will be less than 1. Other definitions are possible, but ø
has the advantage that it can be computed from quantities
that can be measured experimentally.

2.1.2. Discrete Kinetic Equations. The equivalent of
the Smoluchowski equation in the discrete case is a set
of first-order or pseudo-first-order rate equations govern-
ing the populations of the discrete species. These can be
written in the form

where (F1, F2, ..., Fn) is the vector of populations, one for
each discrete species, and

is a matrix of rate constants or step transition probabilities.
For a molecular motor, some of the elements of K will
be functions of the motor position and/or applied force.
The condition that all the populations add to 1 (the system
must always be in one state or another) means that the
sum of all rate equations must be zero, which requires

FIGURE 2. (a) Kinetic mechanism equivalent to the potential energy
surface in Figure 1. This “mechanism” is a periodic network of
chemical states (A, B, C) and transition pathways. The four unique
pathways are labeled 1, 2, 3, and 4. Notice that states A and C
are connected by two distinct pathways with different kinetic rates
and different dependence on external force. (b) Set of chemical
equations equivalent to the network in a). Two kinetic equations
appear for A a C, corresponding to the two distinct transition
pathways in (a).
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that the diagonal elements of the rate matrix equal the
negative of the sum of all other elements in the same
column. Comparing eq 7 with eq 5 above shows that eq
7 is simply a discrete version of the Smoluchowski
equation. In fact, both are forms of the master equation,
which governs all Markov processes.5,9

2.2. Discrete Chemistry, Continuous Mechanics. The
Smoluchowski equation gives a fully continuous descrip-
tion of a molecular motor, and the kinetic equations give
a fully discrete description. A “mixed” description is also
possible, in which the chemistry is discrete but the
mechanics are continuous.

In most cases, physical movements associated with the
chemical reaction are much smaller than those associated
with motor movements. Moreover, the chemical reaction
often proceeds by long pauses in which nothing happens,
followed by very rapid transitions to a new chemical state.
This is the case, for example, when the motor is waiting
for a new fuel molecule to bind or for reaction products
to release, or whenever a high, narrow kinetic barrier must
be crossed. In these circumstances, little is lost by replac-
ing the continuous reaction coordinate with a discrete
“reaction index” that merely labels the intermediate
chemical states. A two-dimensional potential energy
surface then becomes a series of one-dimensional poten-
tials (suitably averaged over the regions corresponding to
each chemical state) connected to each other by phe-
nomenological kinetic transition rates. The system diffuses
smoothly along the continuous position variables but
jumps discontinuously between the various potential
energy surfaces when chemical transitions occur. The
model for the Fo rotary motor presented in section 3,
below, is a theory of this type.

All three of the approaches outlined above are simple
but well-founded basic methods for describing molecular
motors. Many other variants are possible. The simplicity
of the mathematics in the discrete cases may lead some
to question whether they are appropriate for systems as
complex as molecular motors. But as indicated by the
development above, each approximation in the process
of going from a detailed atomic description to a simple
discrete description is understood. It is therefore possible
to build simple models that can be justified quite rigor-
ously. The main difficulty is usually in defining the correct
modelschoosing the important degrees of freedom and
their physicssrather than in justifying the final relatively
simple mathematical description.

2.2.1. Modes of Mechanochemical Coupling. Apart
from the details of particular systems, two general mech-
anisms have been identified by which chemical energy
can be converted into mechanical motion: the power
stroke and the Brownian ratchet. The model for the Fo

rotary motor described in section 3, below, is particularly
appropriate in this regard, since it includes both a power
stroke and a Brownian ratchet within the same overall
motor mechanism.

The motor designs most closely resembling a macro-
scopic engine involve “power strokes”, in which some step
of the chemical reaction is mechanically coupled to move-

ment and generation of force by some part of the motor.
For example, the chemical reaction can be binding of a
substrate molecule, and the movement, the corresponding
conformational change in the protein. The surface in
Figure 1, with its trough that diverts a chemical step into
a movement step, is an example of a power stroke model.
The simplest power stroke model is just a series of these
troughs, with no purely chemical steps at all:

This example shows that in many ways the power stroke
mechanism is the molecular analogue of an inclined
plane: a sloping groove in the potential energy surface
that converts forces in one direction (along the chemical
axis) to forces in another direction (along the position
axis). Like an inclined plane, the slope of the trough with
respect to the position axis determines the mechanical
advantage of the machine. A large slope means that a
small chemical force (gradient of the potential with respect
to the chemical coordinate) will produce a large (mechan-
ical) output force, that is, a mechanochemical advantage
greater than 1. But a large slope also implies a small step
size (per chemical turnover), so large mechanochemical
advantage comes at the expense of small maximum
velocity. Conversely, a small slope means a small me-
chanochemical advantage, but high velocity.

Much attention has been given in recent years to
“Brownian ratchet” models for molecular motors.7,10-15

The original ratchet model was devised by Feynman,16 but
his example was driven by a temperature gradient and
does not apply directly to molecular motors, which always
operate in a constant-temperature bath. In a Brownian
ratchet, the role of the chemistry is to select forward
fluctuations (or prevent backward fluctuations) of the load,
rather than to apply a mechanical force directly to the
load. That is, the load force is driven by its own Brownian
fluctuations, and the chemistry provides the energy to
rectify the diffusive motion of the load. Though this is a
slightly more subtle mechanism than the power stroke,
even very simple mechanisms can act as Brownian
ratchets. For example, consider the simple model for a
DNA polymerase shown in Figure 3. The polymerase
molecule is bound at the junction between a region of
double-stranded DNA and a region of single-stranded
DNA. It can slide rapidly between a “closed” state and an
“open” state one step forward. While in the open state, a
new nucleotide can bind and be incorporated into the
growing strand, thus locking the polymerase one step
ahead. This physical model can be described by a two-
step kinetic scheme,
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where the single chemical step includes both binding and
incorporation of the nucleotide into the chain. The
potential energy surface for this motor might look much
like the surface in Figure 1, except there would be only
two potential energy minima per unit cell (Ai and Bi), and
the trough would be a purely mechanical transition, i.e.,
it would be almost vertical, along the position coordinate.
From the viewpoint of the basic free energy surface, the
difference between a Brownian ratchet and a power stroke
may be rather subtle because the motor potential has been
combined with the load potential. A power stroke surface
always has an “inclined plane” like the trough in Figure
1. A ratchet surface always has a zigzag of pairs of
transitions at right angles, one nearly parallel to the
chemical axis, one nearly parallel to the position axis. A
plot of the potential energy following the low-energy path
then resembles a staircase with step height much larger
than kBT. The flat regions allow mechanical diffusion along
the position axis, and the vertical drops are (nearly)
irreversible chemical steps that prevent the load from
diffusing backward.

In this example, the motor moves forward because the
chemical step is irreversible, i.e., its free energy of reaction
is large and negative. This example clearly illustrates that
the chemical energy is expended to preferentially select
forward steps (or prevent backward steps) and hence to
favor forward motion, rather than doing mechanical work
on the motor directly. It is also worth noting that a

Brownian ratchet can be tightly coupled and efficient in
the sense that each fuel molecule burned results in exactly
one step forward.

2.2.2. The Efficiency of Molecular Motors. The ther-
modynamic efficiency is defined only when the motor
works against a conservative external force, F ) -∂ψ/∂x
(e.g., a laser trap or atomic force microscope). The ther-
modynamic efficiency can be defined, ηTD ≡ FL/(-∆G),
where L is a characteristic spatial distance, usually the
“step size” of the motor, and ∆G is the free energy drop
per reaction cycle. For a tightly coupled motor, the average
velocity is the step size times its average reaction rate, 〈v〉
) L〈r〉, where 〈r〉 is the average reaction rate (eq 6). In this
case, ηTD ) F〈v〉/(-∆G〈r〉), where 〈v〉 is the average motor
velocity, and 〈r〉 is the average reaction rate. Many motors
appear to be tightly coupled when they are loaded to near
their stall force. This means that, near stall, they have a
very high thermodynamic efficiency. A Brownian ratchet
can be very efficient near its stall force, although its power
output (F〈v〉 ) is small because it moves very slowly; that
is, one must wait a long time between steps.

The situation is more subtle when the motor is working
only against the viscous load of the fluid medium. It is
usually easy to measure the average velocity, 〈v〉, and from
this one can define the Stokes efficiency as ηST ≡ γ〈v〉2/(-
∆G〈r〉), where γ is the drag coefficient. It can be shown
that ηST e 1, and ηST ≈ 1 means that the motor driving
force is nearly constant (i.e., the motor potential has a
nearly constant slope).17 Note that, although the numera-
tor, γ〈v〉2 has the units of energy/time, it is not the rate of
work done on the fluid by the frictional drag due to the
motor motion; this is given by γ〈v2〉.17

3. The Fo Motor of ATP Synthase: A Brownian
Ratchet with a Power Stroke
Cells store chemical energy in several ways. The two most
common energy repositories are in the phosphate bonds
of nucleotides, generally ATP or GTP, and in transmem-
brane electrochemical gradients. Molecular motors have
evolved to use one or the other of these energy sources.
Rotary motors, such as the bacterial flagellar motor, use
ion gradients, while track motors, such as myosin and
kinesin, use nucleotide hydrolysis. However, there is one
protein that uses both energy sources. ATP synthase is
the ubiquitous enzyme that manufactures ATP. This
amazing protein consists of two rotary molecular motors
attached to a common shaft, each attempting to rotate in
the opposite direction. The F1 motor uses the free energy
of ATP hydrolysis to rotate in one direction, while the Fo

motor uses the energy stored in a transmembrane elec-
trochemical gradient to turn in the opposite direction.
Which motor “wins”sthat is, develops more torques

depends on cellular conditions. When Fo winssthe normal
situationsit drives the F1 motor in reverse whereupon it
synthesizes ATP from its constituents, ADP and phos-
phate. When F1 wins, it hydrolyzes ATP and drives the Fo

motor in reverse, turning it into an ion pump that drives
ions across the membrane against the electrochemical

FIGURE 3. Simple Brownian ratchet model. A DNA polymerase
enzyme is bound at the junction between double-stranded DNA and
single-stranded DNA. It can slide one step forward, opening a space
for a new nucleotide, but no farther. Both open and closed states
have equal free energy, so, though it can step back and forth under
the influence of thermal fluctuations, neither is preferred statistically,
and no net mechanical forces push the molecule either forward or
backward. Net forward motion occurs because binding of a new
nucleotide in the open state prevents the backward step.
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gradient. The mechanochemistry of ATP synthase has
been studied in great detail; in-depth treatments, reviews,
and references can be found in refs 7, 8, 18-23. Here we
will give a simplified account of the mechanochemistry
of the sodium-driven Fo motor of Propionigenium modes-
tum. This system provides a minimal realistic example of
a motor that combines a ratchet mechanism and a power
stroke. We refer the reader to the references for a more
comprehensive treatment.

A transmembrane electrochemical gradient provides
the energy reservoir that the motor will convert into a
rotary torque. The thermodynamic measure of this energy
gradient is the chemical potential difference (measured
in millivolts) between the periplasm (high ion concentra-
tion) and the cytoplasm (low ion concentration):

where e is the electronic charge, pNa+ ) -log [Na+] (the
sodium analogue of pH), and ∆ψ is the transmembrane
electrical potential.24

Figure 4A shows the overall geometry of the Fo motor.
It consists of two counter-rotating subunits:

• The “rotor” carries 10-12 negatively charged ion-
binding sites equally spaced around the periphery, and
lying below the level of the membrane. The sites are in
equilibrium with the low ion concentration in the cyto-
plasm.

• The “stator” provides a hydrophobic seal, preventing
ions from leaking across the membrane. An aqueous input
channel provides access for the sodium ions to bind to
the rotor charges. The bottom of the input channel is
connected to the cytoplasm by a polar strip that permits
the rotor charges to rotate into the input channel. A single
positive charge on the stator located close to the strip
repels the sodium ions; this prevents them from leaking
from the input channel into the cytoplasm.

Figure 4B shows a face-on view of the stator. The only
way for an ion to pass through the stator is for it to bind
a rotor site at the bottom of the input channel. This
neutralizes the site sufficiently for it to rotate to the left
through the hydrophobic interface. Once exposed to the
low concentration in the cytoplasm, the bound ion quickly
dissociates. However, a bound site is not completely
neutral but forms a dipole. If the bound site moves to the
right, the positive stator charge presents a high electro-
static barrier that forces the ion to dissociate back into
the input channel if the site comes too close.

Given this structure, how does the rotor-stator as-
sembly convert the electrochemical gradient into a rotary
torque? First, the chemistry. For simplicity, we assume that
the stator dimensions are such that only one rotor site is
in the rotor-stator interface at a time. During the transit
through the interface, only one reaction takes place: the
binding and dissociation of sodium ions to the rotor sites.
Let us follow one rotor site as it passes through the stator.
We can characterize the state of the rotor site by giving
its probability of being unoccupied (0) or occupied (1),
i.e., binding a sodium ion. Denote the probability densities

of each state by F(θ,τ) ) (F0,F1); then the reaction can be
described by a Markov model analogous to eq 7:

where K(θ) is the matrix of binding and dissociation rate
constants in the input channel. Note that the probabilities

∆µNa+ ) 2.3(kBT

e )∆FNa+ + ∆ψ (mV) (8)

FIGURE 4. (A) Simplified geometry of the sodium-driven Fo motor.18

(B) Face-on view of the rotor-stator assembly showing the path of
ions through the stator. (C) Free energy diagram of one rotor site as
it passes through the rotor-stator interface. An empty site sees
the red potential, while an occupied site sees the blue potential.
Binding of an ion switches between the two potentials. Step 1 f 2:
the rotor diffuses to the left, bringing the empty (negatively charged)
site into the attractive field of the positive stator charge. Step 2 f
3: once the site is captured, the membrane potential biases the
thermal escape of the site to the left (by tilting the potential and
lowering the left edge). Step 3 f 4: the site quickly picks up an ion
from the input channel; this switches the site to the blue potential.
Step 4 f 5: an occupied site, being nearly electrically neutral, can
pass through the dielectric barrier. If the occupied site diffuses to
the right, the ion quickly dissociates back into the input channel as
it approaches the stator charge. Step 5 f 6: upon exiting the stator,
the site quickly loses its sodium ion. The empty (charged) site once
again sees the stator dielectric barrier, which prevents the rotor
from diffusing backward. The cycle decreases the free energy of
the system by an amount equal to the electromotive force (eq 3).

W An animated image in QuickTime format is available.

d
dt(F0

F1
) ) K(θ)(F0

F1
) (9)
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and transition rates depend on the angular position of the
site, since binding can occur only when the site is exposed
to the input channel.

Next, we formulate the mechanical equations of mo-
tion. The rotary motion of the rotor is driven by the torque
developed at the rotor-stator interface. This torque
originates from three interactions:

• The Coulomb interaction between the rotor site and
the fixed stator charge, which depends on the rotor
occupancy: φQ(θ,s), where s ) (0,1) denotes the oc-
cupancy state of the site.

• The dielectric barrier, φ∆ε(θ, s), that prevents unoc-
cupied rotor sites from passing through the rotor. The
height of the hydrophobic barrier is given approximately
by 200[(1/ε1) - (1/ε2)] ≈ 45kBT ) 27 kcal/mol, where ε1

and ε2 are the dielectric constants of the aqueous channel
and the rotor-stator interface, respectively.25

• The membrane potential, φM(θ,s), that tilts the
Coulomb interaction potential.

Therefore, the motor torque, τM, can be written in terms
of a potential function, Φ, as

Thus, the Langevin equation governing the rotor motion
is

Or, in the Smoluchowski formulation:

where Φ is the rotor-stator interaction potential and K
is the matrix of transition rates between chemical states.19

Single-molecule experiments are generally designed to
measure the load-velocity relationship, which character-
izes the mechanical behavior of the motor. Equations 9
and 12 can be solved numerically to yield the load-
velocity curve shown in Figure 5. The motor develops its
torque by using electrostatic forces and the transmem-
brane concentration difference to rectify the rotor’s
Brownian fluctuations so that its diffusion is biased to the
left. Ions bind quickly to the rotor sites in the input

channel and dissociate quickly once the rotor has passed
the dielectric barrier and entered the cytoplasmic reser-
voir. The binding-dissociation reaction switches the
electrostatic potential seen by the rotor sites so that its
diffusion to the left is rectified. Note that without the
membrane potential, the motor would be a pure Brownian
ratchet: the motion of the rotor would be driven only by
its own diffusion. By tilting the electrostatic potential, the
membrane potential provides a unidirectional force to the
left on the rotor, biasing the escape of the rotor site from
the grip of the stator charge. The caption to Figure 4C
gives a heuristic description of the motor cycle.

If the stator is wide enough to accommodate two rotor
sites, then the stator charge can supply an additional
power stroke to assist the ratchet mechanism. (In this case,
there are 24 ) 16 states.19) A typical sequence of events
that advance the rotor by one step of 2π/12 is as follows.
An empty rotor site fluctuates into the rotor-stator
interface, where it is captured by the electrostatic attrac-
tion of the stator charge. The rotor diffuses in the well
until it eventually escapes. This escape is biased to the
left by the transmembrane potential and is helped by the
dielectric barrier, preventing the empty rotor site to the
left of the stator from re-entering the low-dielectric
medium of the stator. Once out of the potential well of
the stator charge, the rotor site quickly binds a sodium
ion from the input reservoir. Now neutral, it can pass
through the dielectric barrier when the stator charge pulls
the next rotor site into its potential. When the rotor site
passes out of the stator, its sodium ion quickly dissociates
into the cytoplasmic reservoir. Once empty, it cannot go
back into the low-dielectric rotor-stator interface. This
is the ratchet step. Note that the ion flux in Figure 5 can
be scaled to be congruent to the velocity. This means that
the motor is tightly coupled: 〈dθ/dt〉 ∝ ion flux, which in
turn is proportional to the reaction rate. That is, on
average, one ion passes through the rotor for every step
of L ) 2π/12.

τM(θ,s) ) -
∂Φ(θ,s)

∂θ
)

- ∂

∂θ
(φQ(θ,s)
charge

interaction

+ φ∆ε(θ,s)
dielectric

barrier

+ φM(θ,s)+)
membrane

potential

(10)

údθ
dt

frictional
drag

) τΜ(θ,s)
motor
torque

- τL(θ)
load

torque

+ τB(θ)
Brownian

torque

s ) (0,1)
chemical states

(11)

∂F
∂t

) 1
ú

∂

∂θ
(Φ′(θ,s)F)

force between
rotor and stator

+ 1
ú

∂

∂θ
(τL(θ)F)

load torque

+

D
∂

2F
∂θ2

Brownian motion

+ K(θ)F
transitions

between rotor states

F(θ,t) )(F0(θ,t)
F1(θ,t) ) (12)

FIGURE 5. Load-velocity curve computed for the Fo motor from
eqs 3 and 2 for the case when the stator can accommodate two
rotor sites. The ion flux is shown on the right-hand axis. It is nearly
superimposed on the velocity curve, indicating that the motor is
almost tightly coupled: 〈dθ/dt〉 ∝ 〈r〉.
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This example demonstrates how a protein can extract
energy from an electrochemical gradient and convert it
into a mechanical force. The other large class of protein
motors that employ nucleotide hydrolysis operate on a
completely different principle. These motors use the bind-
ing energy of the fuel molecule to the enzyme to produce
mechanical force, and they use the hydrolysis reaction to
weaken the binding between the enzyme and products
so that they can be released and the cycle can repeat. A
detailed analysis of this process is reviewed in ref 8.

4. Summary
The fundamental distinction between chemistry and
motor mechanics is one of scale: chemical reactions
proceed by means of small, rapid movements on the
atomic scale, while motors proceed by means of larger,
slower movements on the molecular scale. Both are
strongly influenced by the presence of thermal fluctua-
tions and in most cases make use of the fluctuations in
their mechanisms.

In building a detailed physical model, the question is
not so much how to wed chemistry and mechanics as to
find a mechanism by which the small, rapid, stochastic
motions and the energy derived from chemical reactions
can produce the larger, slower forces and movements of
the motor. Because of the great variety in protein geom-
etry, there are many ways this can be done.

Molecular motors’ operation can be conveniently visu-
alized as stochastic motion on a potential energy surface.
Most motor models proposed recently make use of one
variant or another of the stochastic formalism outlined
above. The key elements are the identity of the important
degrees of freedomsthat is, molecular geometrysand
some knowledge of the important intermediate states and
the rates of transition between them. In principle, these
could be determined by detailed atomic-scale simulations,
but this is usually not practical.

Finally, using a theoretical understanding of motor
mechanisms combined with numerous examples of bio-
logical molecular motors, it is possible, in principle, to
design new motors of our own. The main problem with
such “nano-motor engineering” is not the basic principles
but the more pedestrian difficulties of protein engineering.
A motor requires specific interactions between its parts
and a catalytic interaction with its fuel molecule. These
necessitate precise control over the final structure of the
motor, and this cannot yet be designed de novo with
present technology. Eons of evolution remains the best
protein engineer. One way to avoid this difficulty might
be to assemble new motors from pre-existing “unit
machines”sprotein domains with known structure and
behavior that can be combined without much change in
their properties. Then all that we have learned, both
theoretically and experimentally, about microscopic mo-
tors can be brought to bear. It seems likely that many new
motors, and even basic motor mechanisms, could be built
by this approach.
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